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ABSTRACT

( /7950
A review of literature pertaining to\flow in curved pipes was
conducted. The primary emphasis was directed towards presenting a
description of the curved flow processes, especially these that influence
cavitf}tion and dowgs;fream flow distortion. The flow field in an elbow
hasx’]/oeen described as being divisible into three regions which are (1) the
inviscid central core, (2) the viscous shedding layer and (3) the region of
eddy flow. For turbulent flow, the regions are quite distinct and the
central core corresponds approximately to potential flow. The flow dis-
tortions arising in the bend are oscillatory in nature and are observed to
persist a great distance downstream with a strong dependence upon the
entrance conditions. Analytical treatments of curved pipe flow have been
primarily confined to fully developed coiled pipe flow. It was concluded

that there is inadequate experimental and analytical information available

for solutions to problems arising in ducting the propellants of liquid rocket

engines.
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INTRODUCTION

Elbows and pipe bends are potential sources of cavitation and flow
distortion in the propellant lines of liquid rocket engines. This is particu-
larly true for the sharp turns and high flow rates required to meet the
stringent weight and space limitations of such applications. Unfortunately
there has been no adequate study of flow distortion and no systematic
investigation of cavitation in such configurations. The purpose of this
effort is to review some previous research, both experimental and ana-
lytical, in an attempt to obtain an insight into the factors influencing liquid
cavitation and flow distortion arising from the flow phenomena in elbows
and pipe bends which may be located in the propellant system of liquid

rocket engines.

The primary influence of a duct elbow in a flow system is to
generate greater total head losses than would normally occur in a straight
duct of equal length. However, if the elbow is located in a propellant line
near the suction side of a pump for a liquid propellant rocket engine, the
fluid will approach the inlet in a disoriented and nonuniform manner,
especially if separation occurs within the elbow or the velocity profile at
the elbow entrance possesses a certain asymmetry. The most efficient
pump design requires that the approaching flow be as uniform as possible
so that the impeller blades can be designed for the proper relative veloci-
ties without introducing unnecessary compromises. Space or weight
limitations may preclude the use of guide vanes or a length of straight
pipe run before the pump entrance; hence, it is desirable that the elbow

be designed in such a manner so as to disturb the flow as little as possible.

Cavitation in the proximate elbow may introduce additional
reductions in the pump efficiency. Because of hysteresis associated with
the formation and disappearance of cavitation bubbles, the vaporous
pockets formed in a cavitating elbow may persist in a supercooled state

for some distance downstream before collapse. If these bubbles enter



the pump, they will form '"weak' spots in the liquid and thus provide the
nuclei for possible premature inception of cavitation within the pump

itself and with a drastic reduction in pump efficiency as a result.

To avoid cavitation within the pump and the upstream ducting
system containing pipe bends, it is necessary to bring the liquid to the
inlet section of the pump under a sufficiently high static pressure, obtained
either by auxiliary pumps or by pressurizing the propellant tanks. Since
either technique introduces an additional weight penalty to the propﬁlsion
system, it is desirable to design the components of the pump feed system,
e.g., elbows, so that 2 minimum weight system is achieved but in such

a manner that cavitation within the pump itself is not induced.

The prediction of cavitation inception characteristics of a particular
elbow design requires, at the very minimum, a knowledge of the vapor
pressure of the liquid and the pressure coefficient of the elbow which may

be defined as follows:

P1 -Pp
Cp= 7 (1)
pW

2g

where p; is the static pressure taken immediately upstream of the bend
but sufficiently far from the bend so that the pressure is uniform across
the pipe and p is the local static pressure at any desired point within the
flow field. Also W is the average velocity at the same reference location
as p; and is defined by

m

p

W = (2)

where m is the weight flow rate through the pipe and A is the cross

sectional flow area at the reference location.

Unfortunately, due to the complex three-dimensional nature of

the flow, there exists, at the moment, no satisfactory means of predicting




the pressures within a duct elbow with a circular cross section or of
predicting the flow patterns in the downstream pipe. However, various
aspects of this type of flow have been experimentally and analytically
investigated to some degree, cavitation being an exception. As an aid

to future studies, it is the purpose of this report to review some of these
investigations in an effort to provide an understanding of the fundamental
nature of flow in a pipe elbow. For brevity, only those references will
be reviewed that represent the state of knowledge of curved ducts and
judged to contribute most to the understanding of the present problem.

A bibliography of related references will be provided for those interested

in pursuing the subject in greater detail.

The author wishes to acknowledge the assistance and cooperation
of his coworkers, Mr. E. H, Ingram and Mr. Carl T. K. Young, in the
preparation of this report and in the clarification of the problems involved

by their stimulating discussions.



TECHNICAL DISCUSSION

Cavitation

Cavitation has long been a source of problems to hydraulic and
marine engineers. It can create undesirable noise and vibration and
reduce the efficiency of hydraulic structures. Prolonged operation under
cavitation conditions can attack the surfaces and result in pitting or erosion
and quite possibly destruction of the equipment insofar as satisfactory

operation is concerned.

Cavitation can be particularly troublesome in the pumps and the
lines that transport the propellants for liquid propéllant rocket engines,
It is a primary consideration in the design of liquid pumps and imposes a
number of restrictions on their operating limits and efficiency. For this
reason, cavitation in pumps has been studied quite extensively. The cavi-
tation of a liquid in curved ducts has received some attention from early
investigators primarily as post facto studies of the damage to dam conduits.
Insofar as could be determined, little attention has been devoted to cavi-
tation within curved ducts in the more modern applications to liquid rocket

propellant feed systems.

Cavitation is the formation and subsequent collapse of holes or
voids in a liquid when the local static pressure at some point decreases
to approximately the vapor pressure and then increases as the slug of
fluid progresses downstream. The cavities may appear as a result of
dissolved gases being released from the solution or of local boiling of the
liquid itself. The pressure variations may occur from a vortex system or
from velocity changes as the fluid conforms to the solid boundaries of a

duct or an immersed object,

There are a number of factors which influence the onset of
cavitation. The dissolved gas content may strongly affect the pressures

at which cavitation begins to appear since the gas may come out of solution




when the pressure is still far above the vapor pressure of the liquid. The
gas content influences the compressibility of the surrounding liquid and
hence the propagation characteristic of the cavitation induced pressure
variations, especially those arising during the rapid collapse of the bubbles

on reaching a region of pressure greater than the vapor pressure.

The formation of a cavity or bubble is also dependent upon the
surface tension of the liquid. Here again the gas content as well as the
liquid temperature and the presence of any dissolved impurities exercises
an influence even if in minute concentrations. External influences such as
noise level, heat transfer, turbulence level, surface roughness, and fluid
intermolecular properties such as viscosity, thermal conductivity and the
mass diffusion coefficient may also play an important role in the cavitation
process. Because of the expense associated with testing prototype hard-
ware, scaling laws governing the various factors influencing cavitation are
of considerable importance in cavitation experiments. Because of the large
number of variables involved, the efforts to find similarity or scaling laws
encompassing all of the aforementioned effects has, unfortunately, not been

completely successful.

The problem is not completely hopeless, however, because of the
relatively minor role most of these effects play and the dominant role of
a few. The following discussion illustrates the scaling of the vapor pres-
sure which is by far the most important liquid property to consider for

cavitation studies.

The pressure coefficient for noncavitation flow associated with a

structure of specified geometry is defined to be

Cp:pl_p (3)
p W*

2g

where p; is some reference static pressure in the flow field, p is the
static pressure at any location on the body or in the flow field, p is the

density of the fluid and W is the mean fluid velocity.
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The "minimum pressure coefficient" occurs at a point on the
bounding surface or in the enveloping flow where the static pressure is a
minimum (the pressure coefficient is a maximum) and is defined as

P1 - Pmin

Prnin = (4)

2g

The most important effect related to the scaling of cavitation is
the vapor pressure of the liquid at the prevailing liquid temperature. The
scaling parameter incorporating the vapor pressure is called the '""Thoma-

Moody cavitation number', which is defined as
P1-P
o = —-—————--Zv (5)
pwW
2g

where p_ is the vapor pressure of the liquid.

There are two important stages associated with the cavitation
process, The most advanced occurs when the vapor pressure is high with
respect to the local static pressure and profuse cavitation is present. This
is called the ''cavity flow'" regime wherein an extensive vapor pocket is
formed and the cavitation process and the flow field are coupled so that
cavitation influences the pressure distribution over the body, depending
upon the size of the pocket. The second regime occurs when the vapor
pressure is approximately equal to the local static pressure so that only
a limited number of cavitation bubbles appear. This is called "incipient
cavitation' regime where the voids comprise a negligible portion of the
fluid volume so that the noncavitation static pressure distribution is not
altered by the cavitation process. If flow conditions are such that cavi-
tation is just apparent (incipient cavitation), then under ideal conditions
where cavitation is due only to the vaporous formation of voids, the local

static pressure is equal to the vapor pressure and

%i = Cpmin (6)




where o, is defined as the inception cavitation number. Tests with
degassed liquids have indicated that, because of the aforementioned
scale effects, there is a time lag in the rate of formation of cavities and
hence the minimum static pressure may often become less thaﬁ the vapor
pressure before the inception of cavitation. Therefore, the relation for

vaporous cavitation is generally

O‘if Cpmin (7a)

i.e.,
pmin _i Pv (7b)

for the specified conditions.

If there is a significant amount of gas dissolved in the liquid, then
cavitation will appear prematurely because of the effervescence of the

gases out of solution, therefore for this less common situation

. > C 8
%3 Pmin (8)

i.e., cavitation will appear before the local static pressure has depressed

to the vapor pressure of the liquid.

The preceding discussions form the basis for a hydrodynamic
determination of the inception of cavitation for a particular flow condition,
That is, if one can predict the static pressure variation for a desired con-
figuration under noncavitation conditions, then, since Equation 7 is valid
under most circumstances, this will enable one to at least estimate whether
or not cavitation will occur at those conditions. It does not enable one to
determine for what conditions cavitation will occur unless additional infor-

mation is available from experimental sources.

Flow Characteristics in a Pipe Bend

Fluid particles passing through a pipe bend of circular cross section

follow a very complex, three-dimensional path. The conditions of the fluid



at the entrance to a bend are established by the upstream ducting system,
and as a result the velocity is generally nonuniform because of viscous
resistance of the walls or obstructions that disarrange the flow. Due to
the variations in the entering fluid velocity, a nonuniform centrifugal force
acts on the fluid as the particles traverse individual curved trajectories
through the pipe bend. This unbalance of centrifugal force leads to the
formation of a secondary flow system which is oscillatory in nature and is
directed outwards at the center of the pipe and inwards near the wall; the
fluid elements moving along the pipe in two sets of spirals which are
separated by the central plane of curvature which contains the centerlines
of the two elbow tangents (Figure 1). The influence of the elbow on the
flow extends for many diameters into the downstream tangent until the
secondary flow system is damped from viscous forces and fully developed
pipe flow is established. In effect, the complex flow patterns arise from
the nonuniform fluid velocity as it enters the bend and the resultant unbal-
ance of centrifugal forces acting upon the flow in the bend. Thus, any
conditions affecting the entering velocity profile would also influence the
flow in the bend and downstream tangent such as (1) lack of fully developed
pipe flow, (2) laminar or turbulent flow, and (3) distortions arising from

other upstream bends, valves, orifices, etc.

The duct downstream of the bend may also affect the flow in the
bend itself. Since several diameters may be required for the pressure to
become uniform across the downstream duct, curtailment of the down-
stream bend tangent will place a constraint on the distance away from the
bend to which pressure variations may extend, thus increasing the magni-

tudes of the relative pressure differences within the bend itself.

A pressure gradient across the bend to balance the centrifugal
forces acting upon the fluid is also generated by the curvilinear flow.
The pressure on the outside of the bend becomes larger than the initial
static pressure, attaining some maximum value part way through the

bend, and the pressure on the inside, nearer the bend origin becomes




{M}

Streamline Near Center

Line
o Initial Position of the
X Streamline

Figure 1. Schematic Representation of the Secondary Flow System in an
Elbow of Circular Cross Section



smaller than the initial value until some minimum value is reached. Thus
as the flow undergoes the transition from rectilinear to curvilinear motion,
a positive pressure gradient in the direction of flow is initially imposed on
the outer wall of the elbow and then a negative gradient is generated as the
static pressure readjusts to a uniform value when the flow leaves the bend.
Conversely, on the inner wall, a negative axial pressure gradient is ini-
tially present as the pressure decreases to some minimum value at approx-
imately midway through the bend and then a positive gradient is formed as
the pressure increases back to a uniform value across the duct downstream

of the turn (Figure 2).

When the turning radius is sharp and the flow rates high, the
centrifugal forces acting on the flow are large and hence the positive axial
pressure gradients may be of sufficient magnitude and extent so that the
slow moving fluid particles near the wall lack sufficient momentum to
traverse the region of increasing pressure. If this is the case, the
particles will reverse their original direction of motion and create a local
region of eddies and vortexing near the duct boundaries. That is, the main
flow fails to adhere to the walls of the duct or it ""'separates''; a very unde-
sirable phenomenon since energy losses result from the vortexing action

and as a result the resistance to flow is greatly accentuated.

If the fluid is a liquid of sufficiently high vapor pressure, the static
pressure near the inside wall of the duct may depress to a value equal to
or below the vapor pressure and thus cause cavitation within the elbow which
is an entirely different phenomenon from separation although both may occur

simultaneously.

10
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REVIEW OF EXPERIMENTAL CURVED FLOW RESEARCH

The discussion in this section is devoted primarily to experimental
investigations of flow in curved ducts. The results and conclusions from
these studies will be interpreted in such a manner as to describe the various
features of the flow in regard to flow pattern distortions and pressure vari-

ations that arise from turning the flow.

Unfortunately, the bulk of the investigations performed to date
have been directed towards experimentally measuring the loss coefficients
with little regard for the nature of curved flow itself. Hopefully, the brief
summary presented herein will serve as an introduction to the subject and
will delineate and clarify the processes that govern the flow in curved pipes
with a finite deflection angle and constant radius of curvature and flow area.
Because of the inadequacy of data and the varied, and often unknown, con-
ditions under which the studies were made, the phenomenological aspects
of curved flow will be emphasized rather than the presentation of results
for solutions for current developmental problems or for future design

purposes.

A number of papers and reports are devoted to methods of
controlling curved flow with such devices as turning vane cascades,
changes in cross sectional shape and area, and others. While these
techniques may eventually be employed as a solution to the present
problems, studies of the individual characteristics of each configuration
are devoted to a particular application and do not yield significant infor-
mation on the basic nature of curved duct flow. In the interest of brevity,
therefore, a discussion of these papers has regrettably been omitted but
some of them are listed in the bibliography for those interested in further

study.

In 1911 John Eusticel published the results of a study in which

he injected dye at discrete points within a fluid stream entering a glass

12




elbow. By using six different colors of dye and with injection nozzles at
various positions within the upstream straight section, the flow patterns

could be observed as the flow progressed through the bend.

For the laminar flow conditions under which the study was con-
ducted, it was observed that upon entering the bend some of the filaments
of dye spread out into bands and crossed to the inner part of the tube.
After reaching the inside of the bend the filament then reflected back
across the tube but always remained in the half of the tube with respect
to the plane of curvature in which the filament entered. Figure 3 is an
attempt to illustrate some of the results obtained in this qualitative but

fundamentally important investigation.

As the flow progressed through the bend, vortices were generated
which persisted through the straight downstream pipe. Eustice concluded
that the persistence of this vortexing, which increased the resistance to
flow in the curved portion of the pipe, was also responsible for the in-
creased resistance to flow in the straight pipe downstream of the turn.

On increasing the flow velocity he found that the curvature of the stream
lines also increased. Prior to the initiation of one test, a uniform coat
of dye was spread on the inside of the pipe and when the water was allowed
to flow the dye disappeared immediately from the outer wall of the bend,
more slowly from the inner wall, and very slowly from the straight part
of the tube. In this manner the variation of the shear stress at the tube

walls was demonstrated.

G. L Ta.ylor2 repeated some of Eustice's experiments with
helical glass tubes, but in order to permit observation of the flow pattern
in the elbow itself, Taylor introduced the dye into the stream after it had
traversed at least one whole turn of the helix. Thus, any turbulence in
the upstream tangent would not destroy the dye filaments before entering

the coiled pipe.

13
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Figure 3. Trajectories of Dye Filaments Injected at the Entrance
to Curved Pipes (Reference 1)
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Figure 4 is an illustration of the secondary flow processes Taylor
found to be superimposed on the main flow. The dye, introduced at point A
flows inwards along the wall until it reaches the innermost point B where it
then leaves the wall and moves across the middle of the section to the outer-
most point C. At point C the dye moves inwards along the wall again, thus
completing the circuit. Occasionally, however, some of the dye divided at

the point C and flowed towards point E.

Outside of Bend

Plane of Curvature

Inside of Bend

Figure 4 Circulation in the Cross Section of a Curved Pipe
(Reference 2)

Observations of the fluctuations indicated that there was a
stabilizing influence on turbulence in curved flow, and transition did not
occur until critical Reynolds numbers higher than those in a straight
pipe were obtained. These visual studies directly supported the con-
clusions of White3 who deduced that the onset of turbulence was the
reason that loss coefficients failed to be correlated by Dean's number, D,

for laminar flow where

15



b . 2paW (i)% ©)
B R '

The loss coefficient, {, is defined as

¢ = resistance coefficient of the curved pipe (10)

resistance coefficient of a straight pipe of
same length and cross section

Figure 5 illustrates the variation of the loss coefficient, {, with D as
presented by White. The points of departure of the individual curves from
the main curve coincide with the onset of turbulence which occurs for

4% 1
—_ <
T S 0.0045 . (11)

For the laminar flow case where { is correlated by D, White gives the

following empirical relation for the loss coefficient

0.45772.22) -1fo.45
g={1-[1-(__“59 } 2 . (12)

It must be emphasized that relative to the present interest in finite pipe
bends, these results were obtained for coiled pipes wherein the flow has

had an opportunity to become fully developed curvilinear flow.

On the basis of further studies, White concluded that if the
entering flow is turbulent, the velocity profile will be flatter than for
laminar flow and hence the pressure gradients across the bend will be
less, As a result, the secondary flow processes are less pronounced

and the losses are less influenced by curvature than for laminar flow.

Yarnell and Nagler4 conducted a number of unique experiments
with water in 6 inch diameter pipe bends. The most significant part of
this work was the study of flow in the elbow and its downstream tangent
when the velocity profile in the approaching pipe was varied from its

normal uniform distribution about the pipe axis.

16
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Since the secondary flow processes in the elbow bend arise from
the nonuniform velocity profile across the pipe at the entrance, the type
of secondary current that prevails in a bend will depend on the nature of
the velocity distribution in the approach tangent. Yarnell and Nagler
found that if the particles of highest velocity are asymmetrically located
with respect to the plane of curvature, rotation of the entire mass of fluid
will be induced. If the high velocity particles are located above the plane
of curvature, the secondary current will exhibit a counterclockwise motion
as viewed looking downstream in a bend to the right. If the high velocity
particles are located below the plane of curvature, the rotation is clock-
wise; i.e., the filaments of high velocity tend to rotate to the outside of
the bend and the filaments of low velocity toward the inside of the bend
when the velocity profile is asymmetrical with the plane of curvature. If
the velocity distribution is symmetrical with respect to the plane of curva-

2

ture, the two secondary currents of the type observed by Taylor® will be

induced.

Figure 6 illustrates the influence of the asymmetrical entrance
velocity profiles on the pressure distributions in the plane of curvature at
the inner and outer walls of a 90° bend. Of importance to the cavitation
tendencies of liquids in elbows is the change in minimum pressure at the
inside wall as the velocity profile is distorted such that the high velocity
is directed either to the outside or the inside of the entrance to the bend.
With a symmetrical, fully developed profile at the entrance, the minimum
pressure at the inside wall was about 2 feet of water. When the high
velocity particles were directed to the inside of the bend entrance, the
minimum pressure was about 2 1/2 ft; only about 1/2 ft below the pressure
at the entrance. These results indicate that the cavitation characteristics
of an elbow could be altered by imposing at the elbow entrance a nonuniform
velocity profile with the high velocity directed towards the outer wall. From
the data presented, velocity variations asymmetrical to the plane of sym-

metry apparently do not strongly influence the pressures on the inner and

18
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outer walls although there seems to be some tendency to slightly increase
the pressures on both the walls above that for symmetrical, fully developed
flow at the entrance. However, these results do not imply that there is not

a pressure decrease away from the walls.

The head losses measured in the downstream tangents also illus-
trate an important effect that nonuniformity of the entrance velocity profile
may have on the flow downstream of the bend (Figure 7). Persistence of
the flow distortions arising in the elbow may be inferred from the failure
of the energy gradient in the downstream tangent to become parallel with
the energy gradient for a straight pipe, e.g., failure of the flow to quickly
revert to fully developed pipe flow. The slowness with which fully de-
veloped pipe flow is obtained in the downstream tangent indicates the
existence of secondary circulation which generates not only additional
friction losses at the walls, but additional internal friction due to velocity
gradients within the core of the fluid itself. The data illustrated by Figure 7
indicates intensive secondary circulation which persists far downstream of
the bend especially when the velocity profile is asymmetrical with the plane
of curvature. The entering velocity profiles that are symmetrical with the
plane of curvature permit the flow to become fully developed in the straight
section more quickly and hence indicate the generation of less severe
secondary circulation in the bend itself. However, when the high velocity
particles are initially directed towards the inside of the pipe, there is a
considerable increase in head loss in the elbow itself, indicating quite
possibly separation of the boundary layer at the inner wall due to the more
extensive positive pressure gradient in the last 60° or so of the elbow.
These results indirectly indicate that to avoid excessive flow distortion at
the entrance to equipment located downstream of an elbow, one must use
care in the design of the ducting components upstream of the bend, especially
those that would tend to produce asymmetrical velocity profiles about the

plane of curvature.

Figure 8 is an illustration of the isovels within the interior of a
90° bend and the static pressures about its periphery as measured by
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Yarnell and Nagler. At the entrance (0°) the initially symmetrical
velocity distribution has already become influenced by the presence of

the elbow. The high speed filaments originally at the centerline of the
fully developed pipe flow begin to divert to the inside of the bend. Between
deflection angles of 0° and about 45°, this central core of high speed fluid
is not affected by viscosity and hence the secondary currents have not yet
developed. If it is assumed that the streamlines follow concentric circles

of radius r', then Euler's equations become

op pw'
- = 13
or' gr' (13)
where p is the static pressure, p is the density, and w' is the velocity
tangential to the pipe walls. If the flow is potential, then Bernoulli's
equation states
pw'’
- - =P
Pt 53 (14)
where P is the total pressure and is a constant throughout the flow.
Differentiating Bernoulli's equation with respect to r', substituting into
Euler's equation and integrating gives
w!'r' =K (15)

which is the relationship between the tangential velocity and the streamline
radius of curvature for a potential vortex. Therefore, the tendency of the
high velocity streamlines to divert to the inside of the bend qualitatively

conforms to that predicted by potential theory.

As the flow proceeds further into the bend, past a deflection angle
of about 45 degrees for the measurements presented in Figure 8, the
developing secondary currents and viscous resistance begin to distort the
potential flow processes. The result being that the particles of maximum
velocity become displaced towards the outside of the bend by the secondary
currents which arise from the retarding action of viscosity near the walls.

These secondary currents are initially insignificant (especially for turbulent
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flow) and confined to a narrow layer near the walls but they grow slowly

in intensity and size with distance through the bend to eventually consume
most or all of the potential flow. Since the formation of the secondary

flow currents is dependent upon the amount of fluid contained in the viscous
layer near the wall, the flow pattern of the entering fluid will exhibit a
marked influence on the flow processes in the bend. The laminar velocity
profile is approximately parabolic and hence much of the fluid may be con-
sidered to be entrained in a viscous layer. Turbulent flow, however, is
governed primarily by turbulent mixing of the fluid rather than by molecular
exchanges and hence the velocity profile is flatter near the center and steeper
near the walls than the laminar flow. Consequently, the viscous layer of
the turbulent flow is thinner than for the laminar flow and one may expect
considerably different velocity profiles and pressure gradients in a pipe

bend if this type of profile exists at the bend entrance.

Weske® has performed a number of experiments that illustrate
many of the fundamental processes which govern the flow in curved pipes.
He measured, in ducts of various cross-sectional shapes, the velocity and
pressure profiles in 90° bends and downstream tangents. In a manner

similar to that of Yarnell and Nagler4

, the effect of distorting the flow
upstream of the bend was also studied. The tests were conducted using
air instead of water as the working fluid and at velocities high enough to
insure turbulent flow at the entrance to the bends and in some cases,

separation of the flow at the inside wall.

On the basis of his measurements, Weske defines three distinctive

regions of flow in curved ducts as follows (see Figure 9):

1. The "core' or central body of the fluid in which the velocity
component in the axial direction is large compared to the transverse
velocity components. In this region, the flow is largely unaffected by
viscosity; thus, pressure and inertia forces predominate over viscous

forces. The axial velocity distribution approximates free-vortex motion,
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the product of radius and velocity being roughly constant across the
section (Equation 15). As pointed out before, the portion of the flow con-
tained in the ''core' will vary according to the entrance velocity profile and

distance through the bend.

2. The "shedding layer'" near the wall in which the velocity
component normal to the wall is near zero and the velocity component
in the peripheral direction parallel to the wall is of the same order of
magnitude as the component of velocity in the axial direction. The fluid in
this layer has lost a large part of its kinetic energy through viscous stresses
and it therefore flows towards the inside of the bend, in the direction of the
negative peripheral pressure gradient imposed by the core flow. In many
respects this '"shedding layer' resembles the three dimensional boundary
layer on the sweptback wings of high speed aircraft and on bodies of revo-

lution immersed in a moving fluid and yawed with respect to the wind axis.

3. The '""region of eddying flow' occurs at the inside of the bend
where the opposing shedding layers impinge as they follow the curvature of
the wall. In this region, the total energy of the flow is much less than in
the core and the fluid is in a state of random turbulence. Distinction is
made between eddy flow and separated flow which occurs when the radius
of curvature is small. A complete reversal of flow arises in the latter
case when the viscous layer at the inner wall lacks sufficient momentum to

penetrate the region of positive axial pressure gradient near the bend exit.

By careful measurements with directional pitot-tubes and hot-wire
anemometers, Weske obtained the velocity distributions in curved ducts,
one of which is illustrated for a circular cross sectional shape in Figure 10
along with the total and static pressure measurements in the plane of the
curvature. The potential flow approximation (Equation 14) is seen to be
valid since the total pressure is essentially constant throughout the main
body of the flow, the notable exception being near the inside wall in the

eddy flow region where it is much lower. The static pressure increases
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uniformly from the inner wall to the outer wall as required to maintain
equilibrium with the centrifugal forces. The axial component of velocity

in the plane of curvature indicates a distribution approximating the potential
flow; that is, wr' = constant, with the exception of a small portion near the
outside wall in the shedding layer and a much larger portion near the inside
wall in the region of eddy flow. The axial velocity profile in the plane
normal to the plane of curvature was similar to that in a straight duct. The
profile of the velocity component tangential to the wall reveals the inward
motion of the fluid in the shedding layer near the wall and a region of out-

wardly directed fluid in the central core as required to conserve mass.

Axial velocity measurements in a number of diametral planes are
presented in Figure 11, These measurements illustrate the region of
eddying flow which extends across the cross-sectional area from the inner
wall to approximately along a line normal to the plane of curvature. The
pressure profiles in these planes are presented in Figure 12. An important
feature of the static pressure survey is that the pressure conforms to
potential flow expectations since, for the most part, it is essentially linear
with radial distance from the duct centerline in all the planes except the one
normal to the plane of curvature and in this one it is almost a constant, As
in the previous illustrations of the flow variables, the pressure in the region
of eddy flow exhibits a behavior considerably different from that in the
remainder of the duct cross section; thus, pressure is observed to reach
its minimum value not at the inside duct wall but at some distance away

external to the eddy flow region.

The velocity and static pressure measurements obtained in the
midplane of curvature at various stations in the tangent downstream of a
90° elbow are presented in Figure 13. For the conditions under which the
measurements were made, transition to fully developed pipe flow appears
to be taking place at the distance of 12. 3 diameters from the elbow outlet.
These results are comparable to those of Yarnell and Nagler4 in Figure 7,

taken with water under very similar flow conditions, which indicates from
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the slope of the head loss curve that fully developed pipe flow has been
achieved in about 20 diameters from the elbow exit. The increase in
static pressure at the inside of the pipe at two diameters indicates an
impingement of the fluid at the inner wall such as was observed by Eustice!
and illustrated in Figure 3. Weske tentatively concludes from Figure 13
that at 2 diameters from the bend outlet, '"the main mass of fluid, per-
forn:ing a motion of two spirals symmetric with respect to the plane of
curvature, is displaced toward either side, the region near the plane of
curvature being occupied by eddying fluid surging up from the region of the
inside wall of the duct'". It would have been interesting and perhaps en-
lightening if Weske has presented measurements from traverses in

diametral planes other than in the plane of curvature.

The effect of asymmetrical variation of upstream velocity profiles
on the downstream flow is illustrated in Figure 14. Curves (a) and (c)
present the axial velocity profile in the plane of curvature at the elbow
outlet when the screen, by which the velocities in one half of the duct were
reduced, was placed on the inside and on the outside respectively of the
elbow inlet duct. These profiles are not too different from the profile (b)
produced by symmetrical entrance velocity, However, Yarnell and Nagler,
by their head loss measurements under similar circumstances, (Figure 7)
indicate a marked difference in the nature of the flow in the downstream
tangent when the screen is on the outside rather than on the side or when

the flow is initially uniform.

The velocity measurements downstream of the elbow when the
screen is placed on one side of the plane of curvature (curves d, e, f, and
g), indicate a pronounced rotary motion such that the fluid of higher velocity
spirals in the duct appearing first on one side of the duct and then on the
other until the fluid of higher kinetic energy is rather uniformly distributed
around the circumference and enclosing the fluid of lower kinetic energy
near the duct centerline. These measurements substantiate the inference

from Yarnell and Nagler's head loss measurements (Figure 7) that there

32




. v N
(b) //——_'
1.0 = 5/ E\\Q
/\

4
/ (a) Screen section in inside half]
(c) (b)

No screen.,

=
> (c) Screened section in outside
half.
e}
g 0.6 A (d) Screened section on one
= (a) side of plane of curvature.
\3 Traverse 4 inches from out
let.
0.4 (¢) Screened section on one side
. I of plane of curvature. Tra-
i verse 4 feet downstream.
! (f) Tangential velocity component and
g Y P
l' static pressure corresponding to/\
0.2 f (e). -1.4
| (g) Tangential velocity com- /
| ponent and static pressure Y v/W
,, corresponding to (e). / o
~
0.0 -1.6 m;
T (g) () / o
~— A
/ —P
-0.2 i pW’/2g : -1.8
Inside 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Outside

Distance Along Traverse in Plane of Curvature - in

Figure 14. Effect of Unsymmetries Upstream Upon Velocity
Distribution in a 6-Inch-Diameter, 90° Elbow.
R/a = 3.0, Reynolds Number = 0.3 X 10°.
(Reference 5)

33



is considerable distortion of the flow in the downstream tangent when the
entrance velocity profile is asymmetrical with respect to the plane of
curvature. As Figure 7 indicates, this latter condition persists for many
diameters downstream from the bend and requires a much longer transition
length to attain fully developed pipe flow than for the other cases studied.
The motion from this type of entrance velocity profile arises from the
asymmetry of centrifugal forces about the plane of curvature; the fluid of
greater total energy having the largest centrifugal force exerted on it. The
unbalance of force tends to rotate the entire mass of fluid around the duct
axis so that the particles of higher total energy move to the outside of the
bend and the particles of lower total energy to the inside. Because of
angular momentum developed, the rotation continues until the particles of
higher total energy have rotated approximately 7 radians from their origi-
nal positions, then the cycle repeats itself with the rotation in the opposite
direction. If the elbow deflection angle is not too great, the cyclic motion
will persist a great distance downstream of the bend until it decays from

viscous forces in a manner not unlike the motion of a damped pendulum.

Using an inviscid fluid theory, Hawthorne® derived, to the first
approximation, the relationship for the angular displacement of the
streamline pattern with the angle of bend deflection for a linear velocity
profile at the bend entrance, the fluid particles of highest velocity being
located at the top of the pipe. Figure 15 presents the relationship that
Hawthorne developed and illustrates the analogy of fluid oscillation with
the motion of a pendulum indicating the type of rotational motion that
occurs (both experimentally and analytically from such an entrance velocity

profile).

Presumably, it was a similar type of motion that induced the
oscillations that Eustice and Weske observed with a symmetrical entrance
velocity profile. With the symmetrical velocity profile, however, there
would be two axes of rotation displaced on either side of the plane of

curvature and roughly parallel to the axis of the duct. The fluid would
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tend to rotate in two spirals about each of the two axes (as illustrated in
Figure 15 for the linear velocity profile); the particles of highest velocity
originally at the duct axis moving to the outside of the bend. Rotation
about the two secondary axes would continue until the low and high velocity
regions have almost exchanged positions as indicated by Weske's measure-
ments and the motion would then reverse itself to repeat the process in the
opposite rotational direction to give the dampened oscillations of the fluid
across the downstream tangent. These processes are very subtle and
difficult to measure because of rapid frictional dampening and because they

are superimposed on the more discernable axial motion.

As was illustrated in the data of Yarnell and Nagler and of Weske,
the flow conditions in the downstream tangent are strongly affected by the
flow conditions at the exit of the elbow. Variations in these exit conditions
were achieved by distorting the velocity profile at the entrance to the bend.
It would be of interest, however, to experimentally determine the effects
on the flow in the downstream tangent of the oscillatory processes just
described for a symmetrical entrance velocity profile by allowing the flow
to exit the elbow at different points in its rotational cycle. Martin and
Deverson’ performed such an investigation by conducting a series of
total head traverses at various deflection angles in the plane of the bend
of a three-coil helical pipe and then determining the position of the parti-
cles of maximum total pressure as a function of the bend deflection angle 6.
Figure 16 illustrates the oscillatory motion of these particles and the rapid
dampening from the viscous stresses. After the flow has traversed about
360° through the coil, the oscillations are completely damped and the
transition from rectilinear flow to fully developed curvilinear flow has
taken place wherein the velocity profiles remain unchanged with deflection
angle 6 as the flow progresses further through the coiled pipe. From the
relationship shown in Figure 16, the bend deflection required for a com-

plete oscillation of the secondary current was determined to be 195°. The
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general relation for the period of oscillation (Figure 15) for the conditions

of these measurements would be

(S

Period = (1.21) ) (g72)° - (16)

The secondary circulation in the bend will be a maximum after a quarter
period of oscillation which would be the bend deflection angle at which the
particles of maximum total pressure impinge on the outer wall. For the
particular conditions studied, the deflection angle at which maximum cir-

culation occurs is

V)=

A 30° bend was formed with the Rz/a ratio calculated from the above

equation to give maximum circulation at the bend outlet. The same value
2 . . . o

of ®Ta will produce zero secondary circulation at the outlet of a 60° bend

when the particles of maximum total pressure have rotated approximately

90° around the axes of secondary circulation and a small circulation in the

opposite direction at a bend deflection angle of 70°.

Figure 17 shows the total pressure traverses made in and normal
to the plane of curvature at various deflection angles in the 30° bend and
at different stations in the downstream tangent. The continued displace-
ment of the location of maximum total pressure toward the outside wall
in the bend and downstream tangent indicate the existence of strong
secondary vorticity at the bend outlet as was predicted by the theory.

The rotary motion persists far downstream of the bend outlet with the
tendency for the particles of highest stagnation pressure to become uni-
formly distributed around the circumference of the pipe and enclosing the
fluid of lower kinetic energy near the duct centerline; these findings con-
forming to those of Weske. Even at 71 diameters from the bend outlet,
the total pressure profile is not exactly symmetrical, indicating that fully

developed pipe flow has not been attained.
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Figures 18 and 19 illustrate the total pressure profiles in the
plane of the 60° and 70° bends at the bend outlet and several different
stations in the downstream tangent. Once again, as was predicted by
theory, the point of maximum total pressure in the 60° bend retains its
relative position with the outside wall at various stations in the downstream
tangent indicating no rotation of the fluid, but for the 70° bend the point
moves away from the wall indicating a secondary rotation in the angular
direction opposite from that in the 30° bend. From the total pressure
profiles, it is observed that uniform pipe flow was attained more rapidly,

in about 60 diameters, than for the 30° bend.

Another investigation was conducted by Martin and Deverson to
examine the effect of shortening the downstream tangent less than that
required to achieve fully developed pipe flow. Figure 20 presents the
total pressure traverses made in the plane of the bend at the outlet of the
70° elbow as the downstream tangent was successively shortened. It was
observed that on the inside of the bend there is a pressure maximum which
diminishes as the tangent is shortened until it disappears if the tangent
length is zero. Conversely, while the maximum at the inner wall dis-
appears with decreasing tangent length, the total pressure maximum at
the outer wall becomes more pronounced., Furthermore, as indicated by
the total pressure readings near the walls where the velocity is essentially
zero, the static pressure in the bend decreases with diminishing down-

stream tangent length.

These results of Weske and of Martin and Deverson are especially
significant when applied to the design of a ducting system of circular cross
sectional shape if turbomachinery is to be located downstream of a pipe
bend or to the proper interpretation of measurements made within the
bend itself. As predicted by theory and qualitatively confirmed by experi-
mental data, the relationship between the bend radius of curvature and its
deflection angle which would give the most uniform flow conditions at the

outlet in terms of minimized secondary rotation is
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6=knmw (ﬁ%)g n=1,2,.,. . (18)

The coefficient k is approximately equal to unity and must be experimentally
determined and, among other things, will be a function of the velocity profile
at the bend entrance and the length of the downstream tangent. If the bend is
to be located proximate to the suction side of a turbo-pump, there is little to
indicate that the presence of the pump, and especially one that induces pre-
rotation in the suction pipe, will not significantly effect the experimental
coefficient, k, and will perhaps even alter completely the flow process itself

in the elbow including properties such as the minimum static pressure.

Since the flow mechanisms within an elbow are so sensitive to the
presence of neighboring components; one must exercise caution in applying
the results of investigations reported in the literature to a particular bend.
Not until recently has this relationship been recognized and it quite possibly

accounts for much of the lack of agreement between the results of the early

M

investigations. Likewise, when planning any future experiments on flow in
pipe bends, especially those that involve the sensitive inception of liquid
cavitation, the conditions in the adjacent hardware must be carefully con-
trolled before there can be any hope of obtaining reproducible results. For

this reason, one is forced to add these external conditions to the already

imposing array of variables affecting the flow in pipe bends.

The static pressure difference between the outside and the inside of
a pipe bend has been found to be a simple and reliable method of measuring
flow rates once the particular design has been calibrated under the appro-
priate conditions. This form of flow measurement is particularly useful
since it can be located in an existing installation without introducing addi-
tional head loss from the measurement of the flow. Since the problem of
predicting the absolute pressures in an elbow for a given flow rate is, in
some respects, the inverse of the flow measurement application, some

studies related to that problem will be briefly reviewed.
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Under the conditions of inviscid free vortex flow, Addison8 derived
the following expression for the pressure difference across a bend of cir-

cular cross section in terms of the flow rate and bend geometry

. &
L@ ][R @y ]

2

(19)

where
P, - the static pressure on the outside wall
p; - the static pressure on the inside wall

a the duct radius

Cq - a customary coefficient of discharge which must be

experimentally determined to account for the nonideal flow.

Addison measured Cj4 at a point midway through a number of
4 inch diameter bends of various deflection angles and values of curvature
ratio, R/a. The results are illustrated in Table 1. For the bends studied,
the discharge coefficient was practically independent of average velocity at

values of W greater than about 6. 55 ft/sec.

Table 1 was taken under conditions of fully developed pipe flow at
the entrance to the bend. As pointed out in the previous discussions, the
nature of the flow within a pipe bend is strongly influenced by the proximate
components, hence, the discharge coefficient must be a function of the
conditions under which it was measured. In order to examine this influence,
Addison also measured the discharge coefficients at a deflection angle of
45° in a number of 90° bends located within a permanent hydraulic instal-
lation and, except for two cases, found a surprisingly mild effect on Cy
in both magnitude and variation with curvature ratio when compared with

the tests under controlled conditions. However, the variation of Cy with
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Table 1. Coefficients of Discharge for 4-Inch
Diameter Circular Bends (Reference 8)

Angle

of Bend ? Cd
(degrees)

2.05 1.335

45 4. 00 1.081
6.07 1. 040
1.99 1.265
90 4.11 1. 050
6.13 1.018
2. 04 1.215
135 4,11 1.075
6.13 1. 034

velocity was not as uniform as for those elbows tested under controlled
conditions. This small effect on C4 might possibly indicate that the
asymmetric entrance velocity profiles studied in References 4 and 5 were
rather extreme situations obtained under laboratory conditions and not

likely to be encountered in actual practice.

Complications arise when applying the knowledge of elbow flow
meters to the problem of cavitation since it is now necessary to determine
the absolute values for the pressure levels; not merely the pressure
difference between the inner and outer walls. Furthermore, it is neces-
sary that the static pressures, and any subsequently measured empirical
parameters such as Cg, be referred to the deflection angle at which
minimum pressure occurs at the inner wall. With these factors in mind,

9

McPherson and Strausser’ conducted a survey of existing experimental
data and formulated an approximate potential analysis for predicting the
minimum pressure at the inside wall of a duct bend which agreed fairly

well with experimental data in the limited number of examples illustrated.
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Unfortunately the analysis and comments were in reference to conduits of
rectangular cross sectional shapes only and, hence, are inapplicable to
the present study of ducts of circular cross section. Since the method
appears to offer promise as a simple engineering approximation for
determining minimum pressures in conduit bends, it will be derived

herein for the case of circular cross sectional bends.

It is assumed that the flow approximates free vortex flow. Hence

from Equation 15,
r=w' r.=K (20)
where the symbols have been previously defined.

Now the weight flow rate through the bend for a circular cross

section is 8

1
. R <RZ 2
ho=2r CgKpec|= -[-0 -1] : (21)
Therefore from Equation 2

K = Wa . (22)

o] 2 [ )

For potential flow, the total pressure is always a constant throughout the

[T

flow field, therefore from Equation 14

p WliZ p WIOZ p we
Pi+—2§—-Po+ g =Pyt g (23)
Hence the pressure at the inside wall in the plane of curvature is
Pi = Py + 5 (WP - w'y?) (24)

2g

which, with Equation 20, becomes

_ P 2 K V
pi—-pm‘*‘-z—é [W —(R_C):l . (25)
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Since the pressure at the inside wall is the minimum pressure in the bend

for potential flow, the minimum pressure coefficient (Equation 4) becomes

p 2 K \
Py~ Pm - 35 {W -(R_a>:]

Cpmin - 0 w2 : (26)

2g

The determination of the minimum pressure coefficient for a pipe
bend for which the discharge coefficient is known now becomes a matter of
determining the mean pressure, p,, which is defined to be the static pres-
sure in the plane of the bend at which the tangential velocity, w', is equal to
the mean velocity, W. MocPherson and Strausser suggest an approximate
method of determining p,,, but in the examples they presented, p,, is not
too different from the static pressure at the bend inlet, p . Therefore,
without introducing any errors greater than those already incurred by

previous assumptions, let

to a first approximation. The minimum pressure coefficient now

becomes, with the aid of Equation 22,

o [ a2 [T @] -

which is a function of bend geometry only since Cq is approximately
independ‘ent of velocity except for extreme flow conditions such as

separation, etc.

In order to illustrate the capabilities of the approximate analysis,
a sample calculation will be compared with experimental data. Yarnell
and Nagler4 measured the pressures in a pipe bend under the following

conditions:
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a = 0,25 ft
R = 0.688 ft
W = 12,5 {ft/sec
p1 = 355 lbf/ft
Now
? = 2.75
From Table 1, let
Cq=1.1

Now from Equation 22

(12. 5) (0. 25) (0. 5)
1.1{2.75 - [(2.75)% - 1]z}

K =

K =7.476 ft*/sec

From Equations 25 and 27, the pressure at the inside wall of the duct is

] 62. 4 , 7.476 2
pj = 355 + 17 [(12-5) - (0.688 - 0.25 ]

p; = 224 Ibf/ft?

The measured minimum pressure occurred at a deflection angle of about

22.5° in the 90° bend and was approximately
p; = 162 1bf/ft? ;

a difference of about 37% between the experimental and calculated values.
The pressure at the outside wall may be found in a manner similar to

Equation 25 for the inside pressure. Hence at the outside wall

- p 2 K \
Po = Pm -Z—g_,:w'<R+a)] . (29)
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The computed pressure at the outside wall is then

P, = 445 1bf/ft?

and the measured value was approximately

P, = 422 Ibf/ft% .

The nature of the discrepancy between the calculated and measured
inside and outside pressures suggests that the mean pressure is actually
lower rather than equal to the inlet pressure. In order to examine this
possibility, a value of Cy was computed from the pressure difference

measured at a deflection angle of 22.5° and was found to be
Cq =1.0305

which is less than the value assumed for the comparison. The pressures
at the inner and outer walls were computed once again using this value of
Cq and the computed values still exceeded the experimental values indicating
that the entrance pressure, p;, was greater than the mean pressure, p .,
by about 22 1bf/ft® thus illustrating the validity of Equation 27 within about
10% at least for the case considered. This example also illustrates the

strong influence that the assumed value of Cq has upon the results because

of its being squared when solving for the pressures.

The velocities in the major portion of the fluid have been observed
to qualitatively conform to that described by ideal flow potential theory
(Equation 20). The pressures corresponding to ideal flow (Cy = 1) were

computed from Equation 24 and found to be, assuming p_, = 333 Ibm/ft?,
p; = 132 1bf/ft?
P, = 410 Ibf/ft*

hence, by comparison with the measured pressures, the flow also closely

conforms quantitatively to that predicted by the ideal inviscid flow theory.
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The exception is at the inside wall where there is a jump in static pressure
resulting from the two secondary currents at the wall rotating to the inside
and impinging at the plane of symmetry. Since the ideal theory does not
include any viscous effects, it should be expected to predict pressures at
the inside wall lower than those actually encountered. Furthermore, since
the point of minimum pressure in the pipe is not located immediately adja-
cent to the inner wall but some distance towards the duct centerline, the ideal
value of minimum pressure, which governs the onset of cavitation, will be
closer to the actual minimum pressure than that measured by a static
pressure tap at the inside wall. This pressure jump at the inside wall has
unfortunate implications from the standpoint of experimentally investigating
the cavitation characteristics (minimum pressure) of elbow flow since now
all references to the physical location of the point of minimum static pres-
sure must not be referred to the inside wall but to some point within the
flow where static pressure measurements are difficult to obtain accurately

because of the three dimensional nature of the flow.

To more clearly illustrate the relationship between the minimum
pressure coefficient and the bend geometry, Equation 28 was evaluated for
various values of R/a and Cy and presented in Figure 21. For cavitation
considerations, the consequences of selecting a curvature ratio less than
about 3 are obvious since the minimum pressure coefficient begins to
drastically increase (minimum pressure decreases) with any lower values.
Although the data of Addison, which was presented primarily for illus-
tration purposes, indicated for the most part an independence of C3, and
hence Cpmin’ on velocity, this will not be the case at higher velocities
(and lower values of R/a) since flow separation at the inside wall will be
induced and will significantly alter the flow processes. For this reason
and others elaborated on earlier, more information must be obtained on
the assumption of Equation 27 and values of Cq must be calculated from
more exact analyses or preferably generated experimentally under con-
ditions approximating the actual situations before this semiempirical

technique can be usefully employed for design purposes.
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Before proceeding further, a sample problem will be calculated
for a specific design situation in order to illustrate application of the
theory. Assume that liquid nitrogen with a vapor head of 44. 2 feet flows
through a 90° pipe bend at an average velocity of 50 ft/sec. The cavi-
tation inception occurs as a known function of velocity (Figure 6, Reference

10). Thus,

o, = f((W) Cpmin

and the discharge coefficient is assumed to be unity (ideal potential flow).

Now from the definition of the inception cavitation parameter,
o;i (in terms of head rather than pressure) we can compute the static head
at the entrance to the elbow at which cavitation will first become apparent

in the bend itself. That is, for inception of cavitation,

2

w
hli = "Z—é‘ O'i + hV . (30)

Figures 22 and 23 illustrate the resultant variation of static head with the
bend curvature and average velocity. Here again, one is reminded of the
necessity of maintaining as large a bend curvature and low a velocity as is
possible in order to achieve an optimum system design from the cavitation
standpoint since small curvatures and high velocities require higher inlet
static heads and therefore a higher initial total head for a given upstream

ducting system with its associated losses.

In summarizing the discussion of the experimental investigations,
the flow in an elbow of circular cross section and constant radius of
curvature may be divided into three separate but interrelated regions.
The '"shedding layer' is composed of a layer of fluid near the walls which
has been retarded by viscosity and which has a peripheral velocity com-
ponent towards the inside of the pipe bend in addition to the primary axial
velocity component. The '"core'" of the fluid which is outside the shedding

layer and unaffected by viscosity is essentially governed by potential flow
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considerations, at least in the transition part of a curved pipe for the
limited conditions examined. The ''region of eddy flow'" exists at the
inside wall of the bend where the opposing shear layers impinge and form

a region of nearly stagnant, low energy fluid.

The combination of shedding layer flow and the core flow form a
system of double vortices, one above and one below the plane of curvature,
which are oscillatory in the region of transition from the entering recti-
linear flow to fully developed curved pipe flow. These vortices which are
strongly influenced by the entrance and exit flow conditions, persist far
into the downstream pipe depending upon the strength of the vortex at the
bend outlet. A simple potential vortex solution indicated that the minimum
pressure, which is of primary consideration from the standpoint of cavi-
tation inception, decreases quite rapidly with values of the curvature

ratio, R/a, less than about three.
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REVIEW OF ANALYTICAL CURVED FLOW RESEARCH

The reported analytical treatments of curved pipe flow are even
fewer in number than experimental investigations, and because of the
numerous simplifying assumptions of one form or another, they generally
fail to yield any new information on the basic flow fundamentals pertaining
to the present problem. As far as could be determined, all analytical
treatments of viscous curved pipe flow are restricted to fully developed
flow, e.g., flow that occurs in a helical coil a sufficient distance from
the inlet so that equilibrium has been established between the various
viscous and dynamical influences that cause the initial oscillations in
performing the transition from rectilinear to curvilinear motion. The
fully developed flow is more amenable to analysis than the transition type
of flow that occurs in a finite elbow and at the entrance and exits of a
coiled pipe because the velocity profiles are similar at different stations
and hence all derivatives in the stream direction are either constant or
dissappear entirely. A number of other analyses are applicable only to
curved channels of large depth, thus simplifying the problem considerably
since there will be no viscosity generated secondary currents such as
occur in curved pipes with closed cross sectional shapes. Nevertheless,
in spite of the limitations, a few of the more prominent curved pipe
solutions will be reviewed in the expectation that some contribution might

be of value for future analytical undertakings.

In general, the reported solutions to curved pipe flow may be

divided into two classifications as follows:
1. Solution to the hydrodynamic equations.
2. Shedding layer solutions.

The common parameter to be used for the evaluation of these solutions
will be the minimum pressure coefficient. The general assumption will

be made that the pressure at the centerline is equal to the uniform reference
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static pressure, p,. In order to avoid repetition, the various treatments

will be discussed collectively within their particular classifications.

Solutions to the Hydrodynamic Equations

The hydrodynamic equations governing the flow of an incompres-
sible, Newtonian fluid in the torodial coordinate system illustrated in

Figure 24 are:

The Navier Stokes Equations:

du , v du w du v? sin > 1 9p 0°u , 1 2%
Yo T TRerskg 96 7 T Rewsing ¥ o Vw1 o
+ 1 0%u + (R+2rsiny) du cos du 2 Ov
(R+rsinyg)? 367 r{R+rsing) or r(R+rsiny 9y ~ L2 Jy

___2siny dw [_1_+ sin? Z:IH—COS‘P(R+2rSin¢)zV$
(R+ r sin §)° 06 r? (R+rsiny) r(R+ r siny)

(31a)
ov , v 0v w ov , uv cos 2 1 dp v 1 3
e —_— e — —_— e ———— = e — e+ —_— e —
u<'9r+r 41+R+rsin¢ 006 r R+rsiny i pr Oy v;arz r2 Qy?
2 .
+ 1 av+R+2r51an 8v+ cos Y ov 2cos ¢ ow

(R+rsiny)® 262 r(R+rsiny) 8r r(R+trsiny) a—4’_(R~I-rsinkp)?‘ a0

i_a_u;_k Rcos u _[r(r+Rsin¢)+R(R+rsin¢)] Vz
r2 0y (R+rsiny)? T r? (R+ r sin §)?

(31Db)
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ow v 0 0 i
N W W W cos Y vw 4 sin

or ;—6_47+R+rsin¢ EL) R+ rsiny R+ rsinyg uwe=
) 1 Jp. iy {:& +_l_ otw ; 1 32w+(R+2rsin¢) ow
(R+rsiny)p 06 or? r2 yl (R + r siny)? 962 r{R+rsiny) or
N cos _B_XV_+_ZSin¢ 21_1 2 cos av W J
r(R+rsiny) oy (R+rsinkJJ)2 06 (R+rsinkl.&)Z a6 (R+rsinq))2
(31c)
Continuity Equation:

ou 1 ov 1 ow R+ 2rsiny cos B

§§+?§$+ R+trsiny 00  r(R+rsiny) v R-Fl‘sirnpv-0 (31d)

where u, v, and w are the velocity components in the r, {, 6, directions

respectively.

Dean!! first obtained a solution to this complicated set of equations
by assuming fully developed coiled pipe flow and the ratio, R/a, is very
large. These assumptions enabled him to neglect all derivatives of velocity
with respect to 6 and to simplify other terms containing R + r sin . The
resulting solution was obtained as a small perturbation from straight pipe
laminar flow and, therefore, is not applicable to high velocity or to small
radius of curvature; specifically it is valid for small values of Dean's

number, D, only.

Dean presented the relations for the velocity components from

which it is possible to easily determine the minimum pressure coefficient

32
Pmin (32)

m|;u‘wlm
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Comparison with the free vortex solution presented in Figure 20 gives
good agreement for values of R/a greater than about 6 or 7. Clearly, the
Dean analysis (Equation 32) is not adequate for the present application

where smaller values of the R/a ratio are encountered.

Although Dean's analysis included the effects of friction, one notes
that the pressure coefficient contains no terms involving viscosity. This
is due to the low order of approximation of that analysis. In a subsequent
publication12 Dean included higher order terms in a series expansion of D?.
Although he only presents results up through the second approximation by
which the pressure coefficient may be obtained (with some labor), he
carried out the successive approximation process to the fourth term and
reports that the results are probably not valid for values of D? greater
than 400 which is still too low for the present application to high flow rates
and small radius of curvature. For this reason we will make no attempt
to obtain the minimum pressure coefficient for the second approximation

of Dean.

Cuming13 and Itol4 extended the successive approximation tech-
nique of Dean to include elliptical and square flow cross sections in curved
pipes. Since the restrictive assumptions for these analyses are the same
as for Dean's regarding their applicability to pipe bends of small radius of
curvature and large flow rates, the labor involved to obtain the pressure
coefficient does not make a comparison worthwhile for the present appli-
cations. However, it is interesting to examine the effect of cross sectional

shape on the flow as compared with pipes of circular cross section.

13 jn an elliptical cross

The intensity of the secondary circulation
section is a maximum, about three times that for a circular pipe, when
the ratio of the ellipse axis normal to the plane of curvature to the axis in
the plane of curvature (\) is about 2. When X\ > 6 and A\ < 1, the intensity

of secondary circulation becomes less than for a pipe of circular cross

sectional shape. If this situation maintains itself for small radius of
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curvature and high flow rates, then apparently one method of reducing the
intensity of the secondary circulation in the downstream tangent of a pipe
elbow is to employ an elliptical cross sectional shape in the bend with the
major axis in the plane of curvature and the minor axis normal to it. Such
a possibility is worth exploring in an investigation of techniques for mini-

mizing flow distortion resulting from flow turning.

Shedding Layer Solution

The possibility of obtaining solutions for the large Reynolds
numbers in the laminar and turbulent flow regimes appears to exist in the
shedding layer concept. This technique was first applied by Adlerl> and
later by Barual® 17 to laminar flow and extended by Ito!8 to turbulent flow.
Weskel? employed the shedding layer concept in an analysis of loss coef-
ficients in curved pipes but, on brief examination, the results do not appear

applicable to the present problem of determining the static pressure profiles.

The technique, which thus far has been used only for the case of
fully developed curvilinear flow, consists of solving the following governing

equations in a modified rectangular coordinate system (Figure 25).

The Navier Stokes Equations:

, ou' du' w'  ou' w'? 3 (p a%u! 1 ou'
u—é;-*-VI ay+R+X 06 _R+x___3->—(<;>+vl:axz+R+x ox
(32a)
. o%u! 4 1 9%’ 2 ow' u! }
ay*  (R+x)? 300 (R+x)® 90 (R4x)?
, ov! , ov' w'  ov' 0 (p 0% 1 ov'
Y TV oy T REx ae“‘a?(p)”[axz "R¥x o=
(32b)
. 9%v! L1 82v':‘
3y?  (R+x)*  0e?
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ul_‘?_\’_v'__l_v, ow' . w'  ow' +u‘w' 1 _a% <£)+v‘~azw'

ox ay R+x 06 R+x R+ x 0 L 9x?
(32c¢)
1 ow' . 0w + 1 0w + 2 ou' w' }
R+x ox ay?  (R+x)® 902 (R+x)? 99  (R4x)?
Continuity Equation:
ou' av! 1 ow' u!
+ + + =0 . 2
0x dy R+x 06 R+ x (32d)
The inviscid core flow is first analyzed by assuming a functional
relationship for one of the velocity components. Barua assumed that the
v' component of velocity is zero, Figure 26. Integrating the continuity
equation (remembering that 6 derivatives are zero) gives
A
! =
u RT e (33)

By assuming a constant pressure gradient in the 0 direction (compatible
with fully developed flow) the 6 component of the momentum equation may

be directly integrated to give the axial or tangential component of velocity

B < C )
| -
W = 5% R+x+R+X (34)

where the constants A, B, and C must be determined. This velocity
variation is observed to differ from the free vortex solution by the term

B

A (R+ x)

The x component of the momentum (Equation 32a) may now be integrated

to give the pressure variation in the pipe cross section for inviscid flow

2A4> 1

2
+2C1n(R+x)-(£+ >
2 B2/ (R+x)

p _ B’ (:(R+x)2
P

- BO+ constant
4A° 2 ]

(35)
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It is always necessary that mass be conserved hence the transport
of mass to the outside of the pipe by the u' component of velocity in the
inviscid core flow must be balanced by a flow of mass to the inside of the
pipe through the shedding layer. A solution of the shedding layer will
therefore be based upon the mass balance requirement and will yield the
constants A, B, and C resulting in a coupling between the inviscid core

flow and the viscous shedding layer flow.

The flow in the shedding layer is governed by the continuity and
Navier Stokes equation in the torodial coordinate system, and the thickness
is assumed to be thin with respect to the pipe radius, a, so that the
boundary layer concept is applicable. The Von Karman-Pohlhausen integral
method which requires an assumed function for the velocity profiles in the
shedding layer is employed to solve the resultant equations. Barua employed
simple power series expressions for the axial and peripheral velocity com-
ponents w and v which satisfy the requirements that the derivatives with r
disappear at the edge of the shedding layer and the velocities themselves
disappear at the walls. The following expressions for the constants may be

obtained from Barua's theory:

C 1
= c
(36)
2
()
a a
B _ g
w2
13 37
6 R)VZ ? e
5.635 (—- R
= - Za 1.181 + ] 1.395 + e 1
© 2.45 <§-2
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The minimum pressure coefficient may now be obtained from Equation 35

I CRC

(39)

D e e

where, as was previously stated, it is assumed that there is negligible
contribution to the pressure coefficient due to the centerline pressure

drop.

Equation 39 was evaluated for various values of curvature ratio,
R/a, and presented in Figure 27 with Reynolds number as a parameter.
Comparison is made with the free vortex potential solution (Equation 28)
and the Dean first order solution (Equation 32), The three theories are
observed to tend towards approximately a common result as the radius
of curvature increases with perhaps the potential solution being slightly
greater than the two viscous solutions. Also, the tendency for Cpmin to

decrease with increasing Reynolds number in accord with the results of

the free vortex solution for increasing values of Cq (Figure 21).

Comparison of loss coefficient data with theory16 indicates that
the theory is most accurate for values of R/a less than about 6.0 for the
Reynolds numbers considered in Figure 27. However, at values of R/a
less than about 3. 0, the Barua theory yields Cpmin values greater than

the potential solution. This may quite possibly be due to the fact that the
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particular shedding layer solution of Barua applies to fully developed pipe
flow where the secondary flow processes have had the opportunity to dis-
tort the potential flow which, as limited experimental data indicates, exists
in the entrance or transition region. Evaluation of the axial velocity com-
ponent w' from Equation 34 indicates that the Barua theory yields velocity
relationships which are far from potential and, hence, are not in accord
with the experimentally observed core velocities in the transition region
(elbows of approximately 90° deflection angle). One would intuitively
reason that the secondary flow processes which occur due to friction would
transport fluid of low momentum to the inner wall and thus by retarding
action, increase the pressure at the inner wall (decrease Cpmin) above
that resulting from the ideal free vortex case (Cq = 1.0). These arguments
and the results of Figure 27 indicate, therefore, that Barua's theory should
be conservative from the standpoint of application to cavitation tendency of
finite elbows where the core flow is known to approximate the potential

condition in the transition region.,

The pressure coefficients for the two remaining shedding layer
solutions (Adler!l® and Ito!8) were not derived in the present survey. They

both assumed an axial velocity profile of the form
w!'=A+ B (R + x)

which does not include a term proportional to (R+ x)~! and hence is not
even approximately similar to potential profile which is existent in the
transition region of an elbow for entering turbulent flow. It would be of
interest to compare the turbulent theory of Ito!8 with the laminar theory
of Adler but unfortunately Ito did not present the solutions for A and B
and the reference in which he indicates they may be found?0 was not

available for the present survey.
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CONCLUSIONS

The preceding discussions are primarily an attempt to illustrate
the salient features of curved duct flow. Since there is a total absence
of experiments related to the liquid cavitation phenomenon, the need for
research in this area is obvious. In addition, there has been inadequate
study of the static pressures attained in a pipe bend, especially under the
conditions of the present application. The distortion of flow patterns
incurred from turning the flow has been investigated to the extent that only
certain qualitative generalizations may be made in regards to its persist-
ence in the downstream tangent under realistic conditions at the bend

entrance.

Insofar as could be determined, there are no analytical develop-
ments available which treat the transition type of flow that occurs in the
entrance and exit regions of an elbow. Independent study indicates that
certain mathematical difficulties exist which present formidable obstacles
to be overcome in any analytical description of this type of flow. For this
reason, experimentation will, in all likelihood, provide the bulk of the

information on flow in pipe elbows for the near future.

In relation to the cavitation phenomenon in elbows, there were
illustrated two analyses by which one may obtain the minimum pressure
coefficient in fully developed coiled pipe flow under the assumptions of
zero flow losses. In order to apply these techniques to the computation of
the minimum pressure coefficient in an elbow, one must assume that
part way through the bend fully developed flow is established. Since this
is an unlikely possibility for the most useful bend deflection angles, one
must again rely on experimental data to establish the accuracy of these
analyses before they can be usefully émployed for purposes of designing

cavitation free pipe bends.
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